Plávala, M., Gühne, O., 2024. Contextuality as a Precondition for Quantum Entanglement. Phys. Rev. Lett. 132, 100201. https://doi.org/10.1103/PhysRevLett.132.100201
Abstract
量子资源理论中包括对于不同量子信息处理任务来说很关键的资源。
量子纠缠作为一种资源,与非局域的方案相对应。
量子互文作为一种资源,与制备量子态并对其进行一系列测量量子态的方案相对应。
将非局域的态制备和连续测量的方案联系起来,就能得到这两种资源之间的关系:
本文证明了在非局域系统中,当且仅当在制备和测量方案中存在互文的时候存在纠缠。
若没有互文,则同样没有纠缠。
一个直接的结果就是,任何一种检验互文的不等式同样也可以用来检验纠缠。
而纠缠见证(entanglement witness)也可以被用来设计检验互文的不等式。
Two main scenarios:
- Nonlocal scenarios (NLS)
- Sequential scenario (SQS)
Remote prepareation
Suppose the Hilbert space
Two remote parties, Alice and Bob, have a bipartite state $\rho{AB} \in \mathcal{D}(\mathcal{H{AB}})
is entangled if it cannot be prepared by local operations and classical communications. Otherwise, $\rho{AB}$ is separable, i.e. $\rho{AB} = \sum_i p_i \sigma_i^A \otimes \sigma_i^B$.
Given a
PM contextuality
Kochen-Specker theoreom (1967) established the notion of contextuality which is usually termed as KS-contextuality.
Spekken (2005) generalizes the definition of contextuality, and introduces it into operator theories: preparation, transformation, and measurement.
The definition of Spekkens:
A noncontextual ontological model of an operational theory is one wherein if two experimental procedures are operationally equivalent, then they have equivalent representations in the ontological model.
An operational theory:
Probability for outcome
: Measurement procedure. : Preparation procedure. : Transformation procedure.
Equivalence of preparation procedures:
In quantum theory, a equivalence class of preparation procedures is a density operator
.
Equivalence of measurement procedures:
In quantum theory, a equivalence class of measurement procedure is a POVM
.
Equivalence of measurement procedures:
In quantum theory, a equivalence class of transformation procedures is a CP (complete positive) map
.
Context: the feature that cannot be determined by an equivalent class.
An ontic model:
A complete set of variables:
The space of
Preparation procedure
Measurement procedure
Transformation procedure
The probability density of predition is:
The PM noncontextual model:
There exists PM noncontextual model for
where $\operatorname{Tr}(\rho N\lambda) \geq 0, \sum\lambda \operatorname{Tr}(\rho N\lambda) = 1
Relation between PM Contextuality and Separability
Entanglement in a nonlocal scenario can arise only if there is preparation and measurement contextuality
Theorem 1: Let $\rho{AB}
Proof:
The absence of entanglement implies the absence of contextuality.
Theorem 2: Let $\rho{AB}
Special cases:
: - $\mathcal{H}A = \mathcal{H}_B = 2
K\lambda$ correspond to PM noncontextuality. - Else: $\GammaB(\rho{AB})$ spans almost the entire space.
- $\mathcal{H}A = \mathcal{H}_B = 2